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dealt interestingly with the distinction between philoso-
phy and science. Philosophy deals with what he called
facts of consciousness, whose distinctive feature is that
their esse is percipi, in the sense in which René Descartes
had said that, so far as philosophy is concerned, there is
no difference between seeing something and thinking one
sees it.

The result of this careful phenomenological analysis
(the word phenomenology had been introduced by
Mansel’s masters, Hamilton and Cousin) was that Mansel
saw human experience as inherently complex and myste-
rious. In the background of Mansel’s philosophy there
was always an explicit contrast with a rival kind of reduc-
tive analysis that regarded man as being as unmysterious
in his inner workings as a pocket watch. This contrast was
the key to the controversies aroused by Mansel’s Bampton
lectures, “The Limits of Religious Thought,” delivered in
1858. Mansel held that reason tells us that if evil exists,
then God cannot be both perfectly good and all-power-
ful. However, God’s omnipotence and perfect goodness
must be accepted as a matter of faith. Although God is
perfectly good, we cannot know the nature of his good-
ness. Man’s finite goodness cannot explain God’s infinite
goodness; they are the same by analogy, not identity.

Mansel’s lectures were attacked by E. D. Maurice and
Goldwin Smith, and by John Stuart Mill, who devoted
Chapter 7 of his Examination of Sir William Hamilton’s
Philosophy to Mansel’s views. Mill wrote, “I will call no
being good, who is not what I mean when I apply that
epithet to my fellow creatures, and if such a being can
sentence me to hell for not so calling him, to hell I will
go.” Mansel replied in The Philosophy of the Conditioned,
and Mill in turn replied in numerous footnotes in later
editions of the Examination, listing Mansel first among
his critics. For Mansel man’s goodness was not clear and
God’s goodness was inscrutable; both were equally a mys-
tery.

Mansel’s Letters, Lectures, and Reviews, published
posthumously, contains, among other things, interesting
articles on the philosophy of language and on mathemat-
ical logic.

See also Cousin, Victor; Descartes, René; Green, Thomas
Hill; Hamilton, William; Locke, John; Logic, History of;
Mill, John Stuart; Phenomenology; Language, Philoso-
phy of; Reid, Thomas; Stewart, Dugald.
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MANY-VALUED LOGICS

An orthodox assumption in logic is that (declarative)
sentences have exactly one of two values, true (1) and
false (0). Many-valued logics are logics where sentences
may have more than two values. Aristotle (De Interpreta-
tione, chapter 9) was perhaps the first logician to counte-
nance the thought that some sentences (future
contingents) may be neither true nor false; Aristotle’s
ideas were discussed by many logicians in the Middle
Ages. However, contemporary work on many-valued log-
ics commenced with the work of the Polish logician Jan
Lukasiewicz early in the twentieth century. One hundred
years later there are many well-known many-valued log-
ics, and the properties of such logics are well established.
The logics have important philosophical applications
(e.g., in articulating the views that some sentences are
neither true nor false, or both true and false, or that truth
comes by degrees). They also have important technical
applications (e.g., in establishing various independence
results).

In what follows, p, g, ... will be used for proposi-
tional parameters (variables); A, B, ... for arbitrary sen-
tences; and X, A, ... for sets of sentences. For references,
see the last section of this entry.

LUKASIEWICZ LOGICS

To illustrate the notion of a formal many-valued logic,
consider classical propositional logic with the following
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connectives: A (conjunction), v (disjunction), — (nega-
tion), and — (conditional). This may be formulated as
follows. The set of semantic values, Val, is {0, 1}. The set
of designated values, Des, is {1}. An evaluation, v, assigns
every propositional parameter (pp), a member of Val. All
formulas are then assigned such values recursively by the
clauses:

v(=A)=1-v(A)

v(A A B) = Min(v(A), v(B))

v(A v B) = Max(v(A), v(B))

v(A—>B)=1 if v(A) <v(B)
=1-(v(A) —v(B)) otherwise

(Max(x, y) is the maximum of x and y; Min(x, y) is the
minimum of x and y. v(A—B) takes the maximum value
minus any amount one has to drop to get from A to B.)
The inference from X to A is valid (£ = A) just if there is
no evaluation that makes all the premises designated but
not the conclusion (i.e., there is no v such that for all
BEZ, v(B)EDes, but v(A)&Des).

If everything is exactly the same, except that Val = {0,
%, 1}, one has the three-valued Lukasiewicz logic L,. The
semantic conditions for the connectives can be depicted
in the form of tables, thus:

-1 11/2 0 =

1 112 0 110

/21 1 1 1/2 1/211/2

0 1 1 1 0 1
v | 11/2 0 A 1 1/2 0
1 1 1 1 1 1 1/2 0

172 1 1/2 1/2 1721 1/2 1/2 0

0112 0 00 0 O

More generally, if #>1 and everything is the same,
except that Val = {i/(n—-1) : 0<i<n-1}, one has the
Lukasiewicz n-valued logic L,. Finally, if everything is the
same, except that Val = [0, 1] (the set of all real numbers
between 0 and 1, inclusive), one has the Lukasiewicz con-
tinuum-valued logic L. (The relationship between these
logics is that L, is a [proper] sublogic of L,, if and only if
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[iff] m divides n; and Ly is a [proper] sublogic of all the
L,. The logic in which Val is the set of rationals between 0
and 1 turns out to be equivalent to Ly.)

BOTH/NEITHER LOGICS

The values of a many-valued logic need not be numbers
(and the designated values do not need to be a singleton).
In another well-known family of logics, Val = {1, b, n, 0}.
(1 can be thought of as true and only true; 0 as false and
only false; b as both true and false; and n as neither true nor
false.) Des = {1, b}. One can order these values as follows:

If v is an evaluation of the pps into Val, it is extended to
all formulas by the following conditions:

V(AVB) = Lub {v(A), v(B)}
V(AAB) = GIb {v(A), v(B)}

(Lub X is the least element of the lattice greater than or
equal to every member of X. GIb X is the greatest element
of the lattice less than or equal to every member of X.)
The conditions for negation can be represented as fol-
lows:

110
b b
n | n
0|1

A—B can be defined as —AvB. Note that all these condi-
tions agree with classical logic when the values are just 0
and 1.

These semantics give the logic often called First
Degree Entailment (FDE). If one ignores the value #, one
gets the three-valued logic LP. If one ignores the value b,
one gets the strong Kleene three-valued logic, K;. FDE
and K, have no logical truths; LP (and t;) does. LP and
FDE are paraconsistent (i.e., the inference A, —=A-B is not
valid); K, is not. FDE is a sublogic of both logics, but nei-
ther is a sublogic of the other (and all three are sublogics
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MANY-VALUED LOGICS

of classical logic). The weak Kleene three-valued logic, B;,
is the same as K;, except that any truth function with an
n as an input gives # as an output.

For the first-order versions of all the logics in this
section and the last, the quantifiers V and 3 can be
thought of as the infinitary generalizations of A and v, in
the usual way. Thus, if Dom, is the domain of quantifica-
tion, and every d€Dom, has a name, ¢,, (and if not just
add them):

v(VxA (x)) = GIb{v(A(c,)) : dAEDom}
v(IxA (x)) = Lub{v(A (c;)) : dAEDom}

where the bounds are with respect to the appropriate
orderings.

GENERAL DEFINITION

In general terms, in a semantics for a formal many-valued
propositional logic, there is an arbitrary set of semantic
values, Val. (If the cardinality of Valis n, the logic is called
n-valued; if it is finite, the logic is called finitely many-
valued; if it is infinite, the logic is called infinitely many-
valued.) Des, the set of designated values, is an arbitrary
subset of Val. Each n-ary connective in the language, #, is
assigned an n-place (total) function, f,, with inputs and
outputs in Val. An evaluation of the language, v, assigns
each pp a member of Val. Semantic values are assigned to
all sentences recursively by the equations v(#(A,, ..., A,))
=f, (V(A), ..., v(A,)). An inference is valid if there is no
evaluation that makes all the premises designated and the
conclusion undesignated. (Slightly more general defini-
tions are also possible here.)

For quantifiers, a domain of quantification, Dom,
and denotation function, , are added. For every constant
¢, 8(c)€Dom; if P is an n-place predicate, 8(P) is a (total)
n-place function with inputs and outputs in Dom. v(Pc,,
..c,) = 8(P)(8(cy),...,0(c,)). Each quantifier, Q,
is assigned a (total) function, f,, with inputs that are sub-
sets of Val and outputs in Val. Assuming that each ob-
ject in the domain has a name: v(QxA(x)) = fo({V(A(c)))
: d€EDom}).

It is not difficult to check that any many-valued logic
is a Tarski consequence relation. That is, it satisfies the
following properties. (Here, X,A means ZUA; and set
braces for singletons are omitted.)

IfAEX, == A
IfX ~Aand SCA,thenA = A

IfX=Aand AJA = B, then X, A = B.

If & = A, then any uniform substitution is valid.

(A uniform substitution is obtained by replacing each
occurrence of any pp with the same formula.)

In many cases, the set of values (Val), together with
the operations on it (the f,s), is a special case of an alge-
bra of a certain kind. In classical logic, these are Boolean
algebras; in the case of FDE, these are De Morgan alge-
bras; and in the case of L, these are MV algebras.
Another notion of validity can be obtained by appealing
to all the algebras of a kind. At this point, many-valued
logic slides into algebraic logic.

PROOF PROCEDURES

All finitely many-valued logics are decidable (and a for-
tiori axiomatizable, though not necessarily finitely
axiomatizable). A uniform algorithm is a generalization
of truth tables (often there are more efficient ones). Con-
sider all the possible assignments of values to the relevant
pps. In each case, compute the values of the premises and
the conclusion, and see if there is any assignment in
which all the premises are designated and the conclusion
1s not.

A simple axiom system for L, is as follows:
A—(B—A)

(A=B)~>((B~C)>(A~C))
(—~A——B)(B-A)

((A>—=A)=A)A

The only rule of inference is modus ponens (A,A—>BFB);
AVB is defined as (A—B)—B; and AAB is defined as
—(—Av—B). In each L, a family of J-functions can be
defined, where v(JJA) = 1 if v(A) = 7, and v(J,A) = 0 oth-
erwise (4, here, being any value of the logic). These can be
exploited to give a uniform procedure for producing an
axiom system for each L,. Similar techniques work for
other finitely many-valued logics in which analogues of
the J-functions can be defined. (Much technical effort has
gone into investigating which functions can be defined in
various many-valued systems.) An axiom system for Ly is
obtained by replacing the last axiom cited earlier with:

((A=B)=B)~>((B~A)—A)

If the designated values are changed to [r, 1] (closed at the
left end) or (r, 1] (open at the left end), for some rational
number, 7, the systems are also axiomatizable. If r is an
irrational number, they may not be.
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Appropriate tableau and natural deduction systems
for many-valued logics can often be found. For example,
here is a tableau system for FDE. Lines of the tableau are
of the form A: + or A: —. (Intuitively, + means “is desig-
nated” and — means “is not designated”.) To test the infer-
ence Ay, ... , A,-B, start with lines of the form A;: +, ...,
A, 4+, B: — . The rules are as follows (+ can be disam-
biguated uniformly either way):

aOAB:+  anBi— =(aAB): £
\) N \J
o+ o:— B:— —ovap:t
B:+
avf:—  avp:+ =(avp): £
) N \A
o - o+ f:+ —an-fit
pi-
—/ ot
\2
ot

A branch closes if it contains lines of the form A: + and
A: — . Adding closure whenever there are lines of the form
A: + and —A: +, gives K. Adding closure whenever there
are lines of the form A: — and —A: —, gives LP. (Adding
both gives classical logic.) The first-order versions of all
the finitely many-valued logics already mentioned also
have sound and complete proof procedures. However,
first-order Ly is not axiomatizable. By contrast, the logics
that are the same as Ly, except that for some rational
number, r<1, Des = (r, 1] (open at the left end) or [r, 1]
(closed at the left end) are axiomatizable.

MANY-VALUED AND OTHER LOGICS

A number of important logics, notably intuitionist logic,
standard modal, and relevant logics, are demonstrably
not finitely many-valued. Specifically, suppose that a logic
validates the inferences —A—A and A—AVB. Then for any
a,b&Val, f (a, a)EDes, and if a€Des, f,(a, b)E Des. Now
suppose that the logic is n-valued, and that p,, ... , p, are
distinct pps. Let A be the disjunction of all formulas of
the form p—p; (for 0<i#j<n). Consider any evaluation.
For some i and j, p; and p; must have the same value;
hence, p/~p;, and so A, are designated. Hence, A is a logi-
cal truth. The logics just cited can be shown to have no
logical truths of this form (where — is the intuitionist,
strict, and relevant conditional, respectively).

MANY-VALUED LOGICS

However, nearly all logics have an infinitely many-
valued semantics of a rather unilluminating kind. Con-
sider the set of logical truths of any logic closed under
uniform substitution. Let Val be the set of formulas of the
language; Des = {A : FA}; fu(A,, ..., A,) = #(A,, ..., A,).
Then A iff = A.

[Proof: Suppose that A is a logical truth. Consider
any interpretation, v. It is easy to check that v(A) is A with
every pp, p, replaced by v(p). Since the logic is closed
under uniform substitution v(A) is a logical truth; that is,
it is designated. Conversely, suppose that A is not a logi-
cal truth. Consider the interpretation, v, which maps
every pp to itself. It is easy to check that v(A) = A, which
is not designated.]

The construction can be extended to show that any
Tarski consequence relation with finite sets of premises
has a many-valued semantics iff it satisfies one condition.
This is called uniformity, and is, loosely speaking, to the
effect that pps not involved in an inference are irrelevant
to it. Specifically, if I, A = A, then I' = A, provided that:

1.) A is nontrivial (that is, for some B, A ¥ B)

2.) No formula in A contains a pp that occurs in a
formula in T U {A}

It should be noted that not all logics are uniform. In
Ingebrigt Johansson’s minimal logic, 0L{p, =p} = —q, but
{p, —p} is nontrivial, and 0¥—gq.

The finiteness constraint can be dropped if the
notion of uniformity is strengthened in an appropriate
fashion. (Some interesting differences between single-
conclusion inference and multiple-conclusion inference
emerge in this case.)

PHILOSOPHICAL APPLICATIONS

Many-valued logics have been claimed to have numerous
philosophical applications. Like all interesting philosoph-
ical matters, these applications are debatable.

Lukasiewicz interpreted Aristotle’s argument in De
Intepretatione (chapter 9) as showing that, though true
statements about the past and present are now necessar-
ily true, contingent statements about the future (such as
“There will be a sea battle tomorrow”) currently have an
indeterminate truth status. He suggested deploying L, in
an analysis of this situation, reading the truth values {1, 4,
0} as necessarily true, indeterminate, and necessarily false,
respectively. As one would expect Av—A is not logically
valid in L.
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Lukasiewicz suggested adding an operator to the lan-
guage, [, representing necessity, whose truth conditions
may be represented as follows:

O
111
1721 0
00

Its dual, possibility, <, that is, —[J—, is as follows:

&
1|1
12| 1
0o

This makes the inference A-[IA valid—which is reason-
able enough on the Aristotelian picture. However, it also
makes the inference ¢©A, ©B—o(AAB) valid—which it is
not, even for Aristotle. (Just let B be —A.) As has already
been seen, normal modal logics are not finitely many-val-
ued.

Future contingents are just one example of sentences
that have been suggested as being neither true nor false
(truth value gaps). Others include: sentences with refer-
ence failure (“The king of France is bald,” “3 = 1/0”), cat-
egory mistakes and other “nonsense” (“This stone is
thinking of Vienna”), paradoxical sentences of self-
reference (“This sentence is false”), sentences attributing
a vague property in a borderline case (“This is a child”—
said of someone around puberty), and sentences unveri-
fiable by the appropriate mathematical or scientific
procedure (“There are ten consecutive ‘7’s in the decimal
expansion of 7, “This electron has a velocity of exactly
100 m/sec”).

It is often claimed that K, (or, sometimes, B;) is the
appropriate logic for such cases: Gappy sentences take the
value n. (In the last case, quantum logic and intuitionist
logic have also been suggested to handle the matter.) In
these logics Av—A is not a logical truth, but neither is
anything else. In particular, then, AA—A is not a logical
falsity. Even if “The king of France is bald” is neither true
nor false, “The king of France is bald and not bald” would
seem to be logically false.

One way around this problem is to deploy the
method of supervaluations. If v is any K; evaluation, let u
be a supervaluation of v (v=p) iff:

u(p) is never n, and if v(p)#n, v(p) = u(p)

An important feature of this logic, not shared by 1, is
that if v(A) is 1 or 0, and v=yu, then u(A) has the same
value.

Now define the supertruth-value, v, of a sentence
under v as follows:

vs(A) = 1 if for all g such that v<u, u(A) =1
= 0 if for all g such thatv<u, u(A) =0

= n otherwise

Define an inference as supervaluation valid if it pre-
serves supertruth-value 1. The inferences that are
supervaluation-valid now turn out to be exactly those
that are classically valid.

[Proof: If an inference is not classically valid, let v be
an evaluation that makes the premises true and the con-
clusion false. But v is a K; evaluation and v<v. Hence the
inference is not supervaluation-valid. Conversely, sup-
pose that an inference is not supervaluation valid. Then
there is a K; valuation, v, such that every supervaluation
of v gives all the premises the value 1, but not the conclu-
sion. Hence, there is some supervaluation that gives all
the premises value 1, but the conclusion value 0. This is a
classical evaluation. Hence, the argument is classically
invalid.]

On the other side of the street, it has been suggested
that some sentences are both true and false (truth-value
gluts). These include: paradoxical sentences of self-refer-
ence (“This sentence is false”), statements describing
instantaneous transition states (“He is in the room”—
said at the instant he is symmetrically poised between
being in and out), statements of rights and obligations
(“She is legally required to do such and such”—when the
requirements are based on inconsistent legislation), and
sentences attributing a vague property in a borderline
case (“This is a child”—said of someone around
puberty).

It is sometimes suggested that LP—or FDE if one
wants to also take in the possibility of truth value gaps—
is the appropriate logic for such cases. The glutty sen-
tences take the value b. (Other paraconsistent logics have
also been suggested for the job.) In these logics AA—A
may take a designated value. In LP the negation of this is
also a logical truth.
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A way to regain classical logic with LP is by the use of
subvaluations. Subvaluations and subvaluation validity
are defined in the way dual to supervaluation (b replacing
n, and some replacing all). In the case of subvaluations,
one has the equivalence between classical validity and
subvaluation validity only in the one-premise case. (But
the duality between the two cases is exact. In a classical
multiple-conclusion logic AvB—A,B is valid. It is not
supervaluation-valid. The equivalence between classical
and supervaluational validity holds only because in a sin-
gle-conclusion inference, one is, in effect, disjoining all
the conclusions. In the subvaluation case, this corre-
sponds to conjoining all the premises, which reduces
matters to the single premise case.) The technique of
super/subvaluations can be generalized to FDE, where
there are both gaps and gluts.

A weakness of both LP and FDE is that they do not
have a detachable conditional, since A,A—BFB. They can
be augmented with such a conditional, though. Thus, the
many-valued logic RM; augments LP with a detachable
conditional, =, whose truth conditions can be repre-
sented as follows:

=|1 b 0
1 1 0 0
b|l1 b o0
0 1 1 1

In the context of information processing, truth value
gaps are often interpreted as incomplete information, and
truth-value gluts as inconsistent information. While in
the context of gaps and gluts, a word should be said about
set theory. It is well known that the naive comprehension
schema

xE{y:A(y)}oA(x)

leads to contradiction (and so triviality)—in the shape of
paradoxes such as Russell’s—when the underlying logic is
classical. It has often been suggested that the principle
might be consistent (or at least inconsistent but nontriv-
ial) when the underlying logic is many-valued. Prob-
lems for such suggestions arise because the principle
generates triviality if the logic contains contraction
((A—(A—B))—(A—B)) and modus ponens. Let A(y) be
yEy—B. Call the set that this defines c. Comprehension
quickly gives: c€co(c€c—B). Contraction and modus
ponens then give B. (This is Curry’s paradox.) RM;, K;, B,

MANY-VALUED LOGICS

and L, (for finite n) all contain modus ponens and, if not
contraction, something closely related to it that will do
the same job. However, the schema based on Ly is consis-
tent. If the extensionality principle (Vx(xEyox€Ez)—y =
z) is added, though, then even Ly gives triviality. (Virtu-
ally the same comments can be made about the naive T-
schema (“A” is true «<> A) when self-reference is present.
Though here extensionality is, of course, not an issue.)

For a final example of the philosophical application
of many-valued logics: It is often claimed that the appro-
priate semantics for a language with vague predicates is
one with degrees of truth. Such logics now usually go
under the rubric of fuzzy logics. Ly is a paradigm one
such. (It is not the only one: Ly is one of a family of log-
ics in which Val = [0, 1]. Each is based on a so-called t-
norm—essentially a function stating the truth conditions
for an appropriate conjunction connective.) The only
logical inference that the simplest form of the Sorites par-
adox uses is modus ponens. This is valid in Ly; but if one
changes Des to, say, [0.8, 1], it is not. (Let v(p) = 0.9€ Des,
v(q) = 0.7&Des. Then v(p—q) = 0.8€Des.) Note that
probability theory is not a many-valued logic. The prob-
ability of a compound sentence is not determined by the
probabilities of it components. (Let a and b be independ-
ent fair coins. Let A, be “Coin a will come down heads”;
Az be “Coin a will come down tails”; and B; be “Coin b
will come down heads.” Prob(A;;) = Prob(A;) = Prob(By)
= 0.5. But Prob(AjAA ;) = 0 and Prob(A;ABy) = 0.25.)

TECHNICAL APPLICATIONS

Many-valued logics have various technical applications.
Perhaps the most important of these, in a philosophical
context, is their use in proving independence results.
Thus, suppose that one has some axiom system, T, and
wishes to know whether some formula, A, is deducible in
it. One way to show that it is not is to construct a many-
valued logic such that all the axioms of T always take a
designated value, and all the rules of T preserved desig-
nated values. It follows that all theorems always take des-
ignated values. If one can find an interpretation of the
logic in which A does not take a designated value, it fol-
lows that it cannot be proved.

For example, the following is a set of axioms for the
—/— fragment of the relevant logic often called RW (R
minus contraction). The only rule of inference is modus
ponens:

A—A
(A=B)~>((B2C)~>(A~0))
A=((A=B)—B)
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——A—A
(A>—B)—(B——A)

Now consider the three-valued Lukasiewicz logic, £;. One
can check (e.g., by truth tables) that all the axioms always
take the designated value and that modus ponens pre-
serves that property. Now let C be the formula:
(p—(p—q))~(p—q). Take an evaluation, v, in which v(p)
= % and v(q) = 0. Computation verifies that v(C) = .
Hence C is not provable. Since v(—C) = as well, =C can-
not be proved either. Hence, C is independent of RW.

A much more technically demanding example of the
use of many-valued logics to prove independence is in set
theory. If one takes the values of the logic to be those of
any Boolean algebra, taking the top value as the only des-
ignated value, and interprets the connectives and quanti-
fiers in appropriate ways, the logic delivered is classical
logic. Choosing the Boolean algebra in an appropriately
set-theoretic way, one can also show that the axioms (and
so theorems) of Zermelo Fraenkel set theory, ZF, take the
designated value. Choosing the algebra in more cunning
fashions, one can show that various important set-theo-
retic principles, such as the continuum hypothesis, do not
receive designated values. Hence, ZF does not entail the
continuum hypothesis.

HISTORY, PERSONS, AND REFERENCES

This entry concludes by putting the investigations dis-
cussed earlier in their historical context. Relevant refer-
ences that may be consulted for further details are also
given at the end of each paragraph. For a gentle intro-
duction to many-valued logics, see Graham Priest (2001,
chapters 7, 8, 11); for a more detailed introduction, see
Alasdair Urquhart (2001); and for further detailed tech-
nical discussions, see Richard Hihnle (2001). J. Michael
Dunn and George Epstein (1977) provide a bibliography
of work on many-valued logics up to 1974.

The first modern many-valued logic was %,. This,
and its generalization to n-valued logics, L, were pub-
lished by Lukasiewicz around 1920. At about the same
time, the U.S. mathematician Emil Post was also con-
structing finitely many-valued logics. (The most signifi-
cant feature of Post’s systems is its treatment of negation.
If the values of the n-valued logic are 0, 1, ... , n—1, then
v(=A) =| 1 + v(A)| (Mod n). Philosophical applications
of this many-valued logic are difficult to find.) The logic
L, was published by Lukasiewicz and Alfred Tarski in
1930. Much of the early investigation of many-valued
logics and their axiomatizations were carried out by Pol-
ish logicians including Mordechaj Wajsberg and Jerzy

Stupecki. Finding a demonstrably complete axiom system
for L turned out to be a hard problem. Reputedly, it was
solved by Wajsberg, but the first proofs to be published
were by Alan Rose and Berkeley Rosser and by Chen
Chung Chang in the late 1950s. The unaxiomatizability of
first-order Ly was proved by Bruno Scarpellini in 1962.
(Lukasiewicz 1970, Rosser and Turquette 1952, Wojcicki
1988, Malinowski 1993.)

Canonical statements of the other many-valued log-
ics mentioned in this entry were given by the following:
B;, Dmitryi Anatol’evich Bochvar, 1939; K, Stephen
Kleene, 1952; FDE and RM;, Alan Ross Anderson and
Nuel Belnap, 1975; LP, Graham Priest, 1979. (Rescher
1969, Priest 2001.)

The proof that intuitionist logic is not many-valued
was first given by Kurt Godel in 1933. The idea was
applied to modal logic by James Dugunji in 1940. The
earliest versions of the idea that every logic has a many-
valued semantics are usually attributed to Adolf Linden-
baum in the 1920s. Generalizations are due to Jerzy Los
and Roman Suszko in 1958. (Hughes and Cresswell 1968,
Shoesmith and Smiley 1978, Wéjcicki 1988.)

The applicability of many-valued logics to the view
that some sentences are neither true nor false was pur-
sued by many people in the second half of the twentieth
century. These include Richard Routley, Leonard God-
dard, Saul Kripke, Kit Fine, and Scott Soames. Supervalu-
ations were invented by van Fraassen in 1969. Toward the
end of the twentieth century, their application to vague-
ness became a very standard idea. The application of
many-valued logics to the view that some sentences are
both true and false, though less popular, has been pur-
sued by various paraconsistent logicians. These include
Newton da Costa, Priest, Routley, and Dominic Hyde.
The generalization of supervaluation to logics with gluts
as well as gaps was developed by Achille Varzi in the
1990s. (Rescher 1969, Scott 1974, Haack 1978, Dunn and
Epstein 1977, Humberstone 1998, Varzi 2000, Priest
2001.)

The possibility of basing the naive comprehension
schema for sets on Ly was investigated by Thoralf Skolem
and Chang in the 1950s. The consistency of the schema
(and the inconsistency of extensionality) was proved by
Richard White in 1979. (White 1979.)

Fuzzy logics and their applicability to vagueness have
been investigated fairly intensely since about the 1970s,
by many people, including Kenton Machina and Patrick
Grim, and, on the technical side, Lotfi Zadeh, Petr Hjjek,
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and Daniele Mundici. (Keefe 2000, Héjek 1998, Cignoli,
D’Ottaviano, and Mundici 2000.)

The use of many-valued logics in independence
investigations goes back to the early years of the subject,
though this has flourished with the proliferation of non-
classical logics in the second half of the twentieth century.
One of the earliest techniques for proving independence
results in set theory is that of forcing, developed by Paul
Cohen in the early 1960s. That similar things could be
done with Boolean-valued models was realized by Robert
Solovay, Dana Scott, and others a few years later. (Ander-
son and Belnap 1975, Bell 1985.)

See also Fuzzy Logic; Intuitionism and Intuitionistic
Logic; Logic, History of; Logic, Non-Classical; Modal
Logic; Paraconsistent Logics; Relevance (Relevant)
Logics; Set Theory.
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Graham Priest (2005)

MANY WORLDS/MANY
MINDS INTERPRETATION
OF QUANTUM
MECHANICS

The many worlds/many minds formulations of quantum
mechanics are reconstructions of Hugh Everett III's
(1957a, 1957b, 1973) relative-state formulation of quan-
tum mechanics. Each is presented as a proposal for solv-
ing the quantum measurement problem. Much of the
philosophical interest in these theories derives from the
metaphysical commitments they suggest. They illustrate
the roles played by traditional metaphysical distinctions
both in formulating and in evaluating physical theories.
They also illustrate the range of metaphysical options one
must consider if one wants a metaphysics that is consis-
tent with the structure of the physical world suggested by
the best physical theories.

The quantum measurement problem is a conse-
quence of the orthodox quantum-mechanical representa-
tion of physical properties. In order to account for
interference effects, the orthodox view requires that one
allows for a physical system to be in a superposition of
having mutually incompatible classical physical proper-
ties. An electron e might, for example, be in a superposi-
tion of being in New York City and being in Los Angeles.
If the unit-length vector (NYC), represents the electron
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